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Resonances in positronium hydride
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We re-examine the problem of calculating the positions and widths of the lowest-lying
resonances in the Ps + H scattering system which consists of two electrons, one positron and one

proton. The first of these resonances, for L=0, was found by the methods of complex rotation and

stabilization, and later described as a Feshbach resonance lying close to a bound state in the closed-
channel e “+H ‘syétcm. Recently, results for the L=1 and 2 scattering states were published, and 1t

was found, surprisingly, that there is a large shift in the positions of these resonances. In this work

we repeat the analysis for L=1 and find an unexpected explanation for the shift.

I. INTRODUCTION AND HISTORY

The first evidence for the existence of at least one resonance in the low-energy scattering of

positronium (Ps) on hydrogen atoms came from a stabilization calculation [1] followed by complex

rotation computations [2]. At the time it was not clear what the mechanism of the resonance might
be, but the authors suggested that it was connected with the degenerate 2s-2p threshold in the Ps
atom that lies nearby. Because of the neutrality of the systems this was not likely.

A better suggestion was that there should be resonances generated by the Rydberg bound
states in the closed, re-arranged e * + H “channel. There should be an infinite number of such states,

and they should lie fairly close to the levels of hydrogen, although perturbed by the extended charge

distribution of the hydrogen negative ion. We can also expect that the L degeneracy of the hydrogen
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levels should be broken by the short-range repulsive potential of the H ion so as to raise the low-L
states more than the higher ones, since the low-lying states are more penetrating. Furthermore, these
resonances should be found only in the electronic singlet state, since the hydrogen ion is in a singlet
state. It should be possible to carry out a fairly simple calculation based on this picture in order to
obtain values for the resonant energies (presumably shifted somewhat from the Rydberg positions
due to coupling with the open channel) and the widths.

This program was carried out [3] using a simple form of scattering trial function, but one that
included a reasonable representation of both the open and closed channels. In that calculation it was
Rydberg energies, and the width of the first of these was in fairly good agreement with earlier

calculations. This encouraging result made it seem that the mechanism of resonant scattering in the

Ps+H system was well understood and that no surprises would be found in the higher angular

momentum states.

Recent results [4] of a very extensive complex-rotation calculation for L=1 and 2 have turned
out to be quite different. There is a large shift upward of the lowest-lying p-state resonance from its
expected location near the 2p Rydberg energy, and a corresponding, but smaller, upward shift of the
lowest-lying d-state resonance. The position of the p-state resonance is actually higher than the first
s-wave resonance, reversing our qualitative expectation based on the picture discussed above. The
authors of Ref. [4] suggested that this result could be explained by assuming that there is a very large
coupling shift in these higher angular momentum states, although its cause remained unknown.

This Paper 1s the result of an investigation into this puzzling situation, again using the

methods of Ref. [3] extended to higher angular momentum. We are not trying to improve on the very
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accurate values obtained in [4]. Rather, we are trying to understand those somewhat counterintuitive
results. First, we will formulate the scattering method used and will re-calculate the s-wave results,

verifying the earlier work. Then the p-wave problem will be examined, and an interesting qualitative

conclusion will be reached. The d-state problem will be relegated to a future report.

II. FORMULATION OF THE METHOD
To describe both the open channel [ F (R)] in the conventional way and the closed channel

[ G(Z)] in terms of bound states of the positron in the field of the hydrogen ion we write the Ps-H

scattering function in the following form:

V(7 7,p%) = FR) G(p ) W(r,) + FR) d(p) W(r) + GE) (ry.r)- )

In this expression 7, and 7, are the position vectors of the two electrons relative to the proton taken
as fixed at the origin, and Xis the position vector of the positron. The relative coordinates describing
the position of the center of mass of the Ps atom and its intermal coordinate are

R; = (Fj +X%)/2 and ;3}. =X —Fj, respectively.The internal wave functions of the H atom and the Ps atom

are, of course, known exactly:

o

’ @)

P(r) = £— and $(p) = <—.
r \/E n ﬁﬁ

The nonrelativistic Hamiltonian for the interacting system (in atomic units with energies in

Rydbergs) is
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H=—V1—VZ—V S i 3)

It is convenient to break up the Hamiltonian in different ways corresponding to each of the channels

in the trial function. When considering the open channel the following breakup is useful:

H-= -EI—V;” +Hp v H V%, where
j 2 j 2 2 2 2 2 @)
Hﬁls = _2V§ Bt HIJi: _Vlz.f_":, VAIJZ SR RS
TP s ' X TNa Py
For the closed channel we break the Hamiltonian as follows:
2
H=H, -V +V,

) - )

where H,,.=-V:-Vi-= -2 2 VB:E_E_E,

N o Ip X Py Py

We could treat both F and G in the trial function as completely free to be determined variationally

[5], but in the spirit of the earlier calculation we will represent G as a finite sum of bound-state

functions:

G@ :): C,G, (), where ff d;l dr,dxG (X) ©(r,,r,) HO(r,,r,)G (X) = €,+E,-. (6)
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Since ® is the wavefinction of the negative hydrogen ion, it is an eigenfunction of Hy;-(defined in

Eq. (5)) with eigenvalue Ey-=-1.0555, and Eq.(6) becomes

€, = f dfGn(@[—vf +U(x)J G (%), where U(x) = f f 7, d7,®(r,.r,) Vy @(rp.r,)- 0
We can solve for these energies and wave functions both variationally in the form
G (D) =x Le P D)) 4" x*, ®)
k=0
and by solving the variational differential equation numerically:
®

VG (@) + U G,®=€,G,D.

(Later we will discuss the details of this part of the program, including approximate forms for @ and

hence U(x) and the low-lying eigenvalues €,.)

Without loss of generality and for simplicity we will next derive the optical-potential

scattering equation with only one term in the expansion for G. We begin with the usual functional

I= f f f dR dp,dr,¥ H-E)Y. (10)

Using the wave function from Eq. (1) with G(x) =C G (%), where n refers to a particular eigenstate
supposed to be the main component of the resonance of interest, we can write the compact form

$-p+C Q, and [=A+BC,+DC,
11)

where A=(PIH-EP), B=(Qlfi~EIP) +(PH-EQ), D=(QlH-EIQ).
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We first set the variation on the coefficient C, to zero, obtaining the result C,=-B/2D. But from

Egs.(6) and (11) we see that D =Ey-+€ -E| this has the form of a resonant denominator. After having

accounted for the coefficient C, we can write / in the following form:

1~(op-p)» LE-H QA EF) az

Varying in the usual way on the function F we obtain the following scattering equation:

| V,® [aR'V,R)FE
Af2 217 5 B BN R G R -
E[V & ]F(R)+de KR.R)FR )+2; E-E, € -

13)

where Ey=-1RY, Ep,=~Ry, k=2(E - Ey, - E,)= (2E+3)Ry

electrons; it is a very complicated expression and was evaluated long ago by Fraser [6]. The

potentials V, appearing in the separable integral terms are defined as follows:

V.(R) = [ [d,dF,0(p () [H-E] G, DP(r,.1)
(14)

= [ [d8,dr,b(p )W) [V, - U+e,+E,~E|G,(DP(r,.r,),

where we have used the separation of the Hamiltonian from Eq. (5) and the differential equation of
Eq. (9) in the second form of V, appearing in Eq. (14). Eq. (13) has exactly the form of the well-
known Feshbach optical-potential equation [7] with one important exception: We have not made use

of projection operators in our derivation, so the open- and closed-channel parts of the wave function
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of Eq. (1) are not orthogonal. For that reason, the coupling potentials V, contain explicit energy
dependence, not present in the strict Feshbach formalism, as can be seen from Eq. (14).

In the next Section, we will discuss simplified forms of the kernel K and the hydrogen ion

wave function ®, and we will construct and display the coupling potentials.

III. EXPLICIT FORM OF THE SCATTERING EQUATION
A. The static-exchange approximation
Consistent with our program of continuing the type of calculation introduced in [3] we will

not try to use the exact form of the kernel K given by Fraser [6], but instead will replace it by a

separable kemel of the following simple form (for L=0 and 1):

KR RY=g, P, RP,RYe ™. (15)

The static-exchange approximation corresponds to the first two terms of Eq. (13), and it has been

numerically solved [8] with the exact exchange kernel K for L=0,1,2. For each partial wave we can
solve the corresponding scattering equation with our separable kernel analytically and will adjust the
constants ¢ and g to give good agreement with the results of Ref. [8]. The idea is that the adjusted

kernel can then be used unchanged in the full optical equation. For L=0 and 1 we make the usual

- u,(R) .
substitution F(R) = i P,(R)and find the following integro-differential equation to be solved:

L(L+1) , R s R _8mgy
e u,(R) + A Re f dRRe ™" u,(R), where &, =——>. (16)
0

-1 '(R) k2, (R) +

Solutions for L=0 and 1 can be easily obtained, and they have the following forms. For L=0:
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2,22
Uy(R) = sin(kR) +tan(n0)[cos(kR) -e _aoR( 1 +_(E_2_+QRJ ’
o
a7)
(e +kD*  kO+Skiad+15k e -50
and kcot(ng) = - — ) .
4A,0 16a;
For L=1:
R)=] (kR) - i (kR <« 1 a’+k? ]
ul( )—JI( ) tan('r]l) ,nl( )+e _kE+Z+ = R(|,
where J,(2) =22 cos(z) and #,() = - 2@ siny), (18)
z

(02+k Y . (k2-ad) (g +100°k 2 +k %)

4’11 160:?

and k>cot(n,) = -

When we fit these analytic expressions to the numerical values given in [8] we obtain the following
values of the constants A; and &, :A;=-2.18372, ,=1.10432, A,=-2.31168, and « =1.08183. It
is interesting that these constants are almost the same for both values of L.
B. Constructing the e*-H bound states

Next we must choose a reasonable form for the function $ appearing in the definition of the
potentials V_ [Eq. (14)] that represents the hydrogen negative ion. It would, of course, be best to use
some sophisticated expression, perhaps in the Hylleraas form with many linear parameters.

Following the simple ideas of Ref.[3], however, we continue to use the single-term, closed-shell

3 - + . .
wave function @(r .r,) = Z—e A7) which leads to simplified mathematics. This function is not

T

a very accurate one for the H ™ system, since it actually does not even give rise to a bound ion, but
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it does mimic the distribution of charge density fairly well. In any case, it is the first function that
one should try; later other simple forms may be WOITh exploring. (We have already made use of the
correct binding energy of the ion, Eg=-1.0555, regardless of the actual variational energy

corresponding to this form of @.)

The potential U in which the positron moves then has the following form [Eq. (7)]:

2.2 2 :_Z+4e-22x(l+z). (19)
X Py Py x x

Z6 — 7 "2Z(rytry)
Ulx) == |drdr,e b2
~ /[,

(We let Z=11/16, the best variational value.) Notice that this potential has the correct asymptotic
form, becoming -2/x for large x values (giving the infinite set of hydrogenic states discussed above)
and becoming +2/x for small x values (the repulsive short-range potential that should raise the low-L
states more than the higher-L ones.) In Ref. [3] a table of the first few energies obtained by solving

Eq. (9) are given for L=0,1, and 2. Four of those energies are of interest here:€,=-0.3653, €,=-

~0.0990. These correspond to Ps scattering energies (k*/2=0.4445+€ )

0.1449, €,,=-0.2121, and €;,"

of 0.0792, 0.2996, 0.2324, and 0.34535, respectively.

It has always been understood that the 1s bound state should not be associated with a
resoneince but is just a contribution to the non-resonant scattering and also lowers the energy of the
PsH bound state. The 2s scattering energy should be compared with the value 0.2944 obtained by
Yan and Ho [9]; the agreement is quite close. But the 2p scattering energy given above is not at all

close to the first scattering resonance energy 0.3149 given in Ref. [4]. Actually, our 3p value is

closer.
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C. The resonant separable potentials.
We are interested in solving Eq. (13) for p-wave scattering with the separable form of the

kernel X given in Eq. (15) and with the potentials V,, and Vj, calculated using the simple product

form for the hydrogen ion wave function. By using this function in Eq. (14) we can carry out the

integration over dr,analytically:

=(Z+D)ry
dr, < al 8/m 2 a2 2.7
f = [f(xpl) sz 02 [f(xpl) e (x ,
(20)
where flx,p, )——2———£—U(x)+e +1.5—k—2
x P

The remaining integral over dp, can be done by numerical integration over the magnitude of p, and

U :Iél-f)l , after we re-write the positron bound-state function as follows:

Gy ()51 =52 )( 3P ) @1

Here £ refers to the fixed external coordinate system. Since both x and r, depend on g, it is

convenient to make the change of variables

- A 47 ! M, 2 M R A LN
Bri=p— 3 YR DY (R p)-~p,uR,z. (22)
1

(The expression beyond the arrow can be used in our integral because the terms in the summation
with m=0 will vanish since the rest of the integrand involves only m=0.) Finally, we have two terms

in the potential, one of which depends on the scattering energy:




_11-

Vi, ® = Ay B Vi R+ Vi (R), where Ay (k) =0.4445+€,~—

03 z o) zew] 1
Vi L PH
(Z+1)szdpfdue (R 2) {q(x)p 2p} (24)

and g(x)=e ¥ 2,701+ 2 402 Loz|.
X X X

In carrying out the two numerical integrals, one must substitute the explicit forms of x and r in terms

{" } fR2+EiiRpu. (25)
r 4

Then, for a set of values of R (up to the reasonable upper Jimit of 15) we carry out the indicated

of R, p, aﬁd I

double integration, after which we interpolate to obtain smooth forms of the potentials for use in

solving the separable integro-differential equation (13).

IV. SOLUTION OF THE SCATTERING EQUATION

The complete equation we must solve is an extension of Eq. (16), including both the term

involving the exchange kemnel K and as many “resonant” terms as desired:

) » V. (R)
~ d*u(R) s (R) + 28 2u(R) +)L1R€ 1R11 . 16TR Z Np( ) Np ; (26)
dR? R? 73 v Ay
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In this equation the integrals 7 p ATE defined in terms of the function u(R)as follows:

I, =

,= [@RRe “"u(R), and I, - [dRRV,, (R)u(®), for N>1, Q@7
0

O~ 3

2
and ANP = k——eNp-O.4445.The non-iterative method of solution of such equations works by first

making the following decomposition of the solution:

h I, u, (R)
w(R) =y, (R) + 1 u, (R) + 107y~ Tt (28)
? 3W A,

Then the complete solution u(R) is obtained from the partial functions uNp(R) that satisfy the

following equations:

Quop(R) =0
Qu, (R) +ARe =0
Quy, (R) + RV, (R) =0, [N=2.3,..], (29)
2
where Q=--9_ 2+ 2
dR* R?
Two of these equations have simple analytic solutions:
(R =7 48 and By =2 gy L% M 30)
u = and u = 7 +e —t— .
Op J1 Ip ((xf +k2)2 1 IRk 2%
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(These are obviously related to the solution of the static-exchange approximation.) The other

inhomogeneous differential equations must be solved numerically. When u(R) is inserted in the

definitions of the integrals 7,, a set of inhomogeneous linear algebraic equation for the quantities 7,

is obtained and is easily solved. This finally gives the scattering function explicitly, from whose

asymptotic form the phase shift is read off.

V. RESULTS AND DISCUSSION

We began our investigation of the p-wave scattering by including only the lowest “resonant”

term obtained from the 2p state. The results are shown in Fig.1, where it is clear that there is no sign

of any resonant behavior at all. We searched quite thoroughly near the expected position of the

resonance (k=0.6818) and also near the position found for the Iowesi resonance in Ref. [4]

(k=0.7936) without finding anything but smooth behavior of the phase shift. On this figure we have

also plotted the static-exchange results, and it is clear that adding the 2p term has raised the non-

resonant phase shifts quite considerably. As a last resort we reduced the coupling potential by

various factors as small as 0.1 and were able to produce a narrow, almost unshifted resonance of the

expected kind. Our tentative conclusion at this stage was that the coupling between the closed and

open channels had broadened the expected resonance so radically that it could no longer be

identified; for all practical purposes the resonance had disappeared.

We then replaced the 2p term by the 3p term and recalculated the phase shifts. These are

shown in Fig. 2, where clear resonant behavior is seen. A least-squares fit was made to the standard

resonant formula
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T
=A+BE~+ —
WE) arctz.n[ 2E, }, 31)

and this gave an excellent fit to the computed phase shifts. The resonance we obtain
(E,=0.3648 Ry and I'=0.0339 Ry), however, is wider and higher in energy than that calculated
in Ref. [4]: £,=0.3149 Ry and I"'=0.0032Ry. (In this case the coupling with the open channel has
raised the resonance position by 0.0193 Ry, and its width is about 10 times as wide as in Ref. [4].)
Finally, we included both 2p and 3p terms and obtained the results also shown in Fig. 2; the 3p
resonance remains but is now shifted downward in energy and narrowed. The best fit was obtained
with the following values of the resonance parameters: E;=0.3287 Ry, and I'=0.0060 Ry, which
compare more favorably with the values reported in Ref. [4] than those determined from the 3p state

alone. (The non-resonant parts of the 2p-3p curve are essentially unchanged from the curve with 2p

alone.)

Our final conclusion from this is the following: The lowest-lying p-wave Ps+H scattering
resonance is not generated by the lowest-lying bound hydrogenic p-state in the e*+H' re-arranged
channel, as had been assumed in Ref. [3].In fact, it is the first excited p-state [3p] that produces the
lowest resonance, while the 2p term is effective only in increasing the non-resonant scattering phase
shift. So the apparent large shift between the closed-channel bound-state energy and the position of
the lowest true resonance is spurious; the character of the resonance was just not correctly identified.

(There is no reason to believe, however, that there should not be an infinite number of higher

resonances corresponding to the infinite set of higher Rydberg states. )

O
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We have referred to this result as unexpected, as indeed it is. But perhaps (in hindsight) the
result should not have been quite so surprising. After all, exactly the same phenomenon oCcurs in
the s-wave case: the 1s Rydberg state does not produce a resonance either, and the 2s term generates

the lowest-lying s-wave resonance. In that case, the existence of the true bound PsH state may have

confused the issue, leading us not to expect a 1s resonance (In the Appendix we briefly re-examine

the s-wave calculation.) We see now, however, that this phenomenon may be more widespread. In

particular, we will soon be extending the present work to the =3 case, where there 1is a

corresponding, but smaller, discrepancy [4]; perhaps the same explanation will be applicable there

as well.
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APPENDIX

Before beginning the p-wave calculations described in this Paper, we wished to review the

s-wave problem that had been treated in [3]. The intent was to try to verify the results found there--

annel scattering

that the coupling between the closed-channel 2s wavefunction and the open-ch

function shifted and broadened the resonance by a small amount. This would justify the reliance on

the energies of these bound states as good approximations to the resonance energies, at least for s-

waves, and perhaps also for higher angular momenta. It was not that we doubted the old results, but
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we planned to use the coordinate-space integro-differential equation method described here, rather

than the momentum-space integral-equation technique employed previously, and it seemed

worthwhile to check the two methods against one another.

The new results are essentially in agreement with those of Ref. [3]. In addition, by a minor
modification of the scattering calculation we obtained the binding energy of the PsH state. With the
inclusion of the 1s and 2s terms the binding energy is increased from 0.01686 Ry in the static-
exchange approximation to 0.03007 Ry. (This should be compared with the accurate PsH binding
energy of 0.078393 Ry [9].) Again we find no resonance near the position of the 1s closed-channel
bound state. A least-squares fit of the present s-wave phase shift gives the folIowing values of the
resonant parameters: ER=O.2955'Ry and I'=0.0019, compared' with the values in [3] of E;=0.2954
Ry and I'=0.0022 Ry and the precision results in [9] of Ez=0.2944 Ry and I'=0.0070 Ry. The
agreement between the various values of the resonant energy is quite satisfactory, while the resonant
width is not as good. The main point, however, that the lowest bound state does not produce a
resonance, is still supported by our new calculation. (As in the 2p case, we tried reducing the

amplitude of the 1s potential and recovered an almost unshifted resonance.)
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FIGURE CAPTIONS

Figure 1. P-wave phase shifts as functions of the Ps scattering energy. The solid line gives the

static-exchange results [7] fitted according to Eq. (18). The points (+) are the results when only

the 2p closed-channel function is included: there is no resonant behavior seen.

Figure 2. Resonant behavior of the P-wave phase shifts as functions of the Ps scattering energy.

The solid points (M) are the results when only the 3p closed-channel funétion is included. The
other points (+) give the results when both 2p and 3p functions are included; the resonance is

lowered and narrowed. The curves are least-squares fits to the analytic form given in Eq. (31).
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